DAQ mterface to Oftline

Further Revised Proposal
12/30/98

M. W. Schulz, M. J. LeVine, and Brian Lasiuk

This version
There are two basic changes in this version:

* Addition of a new class with methods to access data by FEE and pin number to facilitate
interface to pad monitors

¢ Removal of access to linearized ADC values for simulation purpose

The latter change was made because the ADC data are only available in 8-bit compressed form, so
simulation should produce them in this form as well. The analysis code accessing simulated TPC data
should use the same access methods as the code analyzing DAQ-produced data.

Introduction

This document specifies the innermost piece of the proposed data interface between DAQ data, provided
either via network direct to Online or from events archived on mass storage. The proposed interface is
meant to be virtually identical for DAQ data and for events provided by the STAR simulation tools.

The present draft of this document does not specify the uppermost layers of the interface [event, detector]. It
specifies access to the TPC data at the sector level. The basic paradigm is that an entire event is read into
memory, and one or more TPC sectors are instantiated as described below. The proposed interface is a
compromise between required storage and transparency of access to the data, but it is intended to be useful
in a variety of different programming styles.

The ADC data provided by DAQ are left in their 8-bit (compressed) form. The method
TpeSector::getSequences() creates an array of structs for a single pad specified by (padrow, pad) which
facilitates access to the zero-suppressed ADC data. Conversion to linearized (10-bit) form is done by
accessing a lookup table with the 8-bit ADC value as index. This makes the source code look a bit
awkward, but there should be little or no run-time penalty with modern compilers and sizable CPU caches.
The motivation for this is to avoid the requirement for an additional IMB of storage for the linearized ADC
data for the sector.

A method TpcFeeSector::getFeeSequences() of the second new class creates an analogous array of
structs, where the pad is specified by (fee,pin).

The basic struct Sequences contains a pointer to a compressed ADC value, the first on a pad. Its remaining
element is a pointer to the array of structs Sequence[| which contain details of each timebin sequence of
ADC values. The struct Sequences is used in both the TpcSector and the TpcFeeSector objects; only the
method differs for specifying the pad.

Note that the time sequence returned by getFeeSequences() is not identical to the time sequence in the
DAQ data format: in the DAQ format, a time sequence is limited to 32 bins. Physical sequences longer than
32 time bins are broken into pieces <32 timebins in the DAQ output. Occurrences of multiple segments will
be reported as a single sequence by this interface, i.e., Humpty Dumpty will be glued together again.

TpcSector class

Unpacking is done by the TPCSector object. The Sector object’s and PadRow struct’s constructors
allocate all of the storage required for the auxiliary structs. Deleting the Sector object releases this storage.
This allows the application programmer to decide how many sectors’ worth of data need to be resident at
any given time.

A method Sector::getPadList() returns an array containing the numbers of those pads which contain valid
ADC sequences.

TpcFeeSector class

The TpcFeeSector object does the unpacking. The FeeSector object’s constructor allocates all of the
storage required for the auxiliary structs. Deleting the Sector object releases this storage. This allows the
application programmer to decide how many sectors’ worth of data need to be resident at any given time.

The array Sequences, whose elements are returned one at a time by TpcFeeSector::getFeeSequences(),
contains all the basic information necessary to navigate the ADC timebin sequences indexed by FEE, pin.
Note that the entire array Sequences|][] is never visible outside the class, and, may in fact not be
instantiated as a contiguous array in memory.

A method Sector::getFeeList() returns an array containing the numbers of those FEEs accessible in this
sector of this event [which can vary when some FEEs are not present].

Definitions

struct Sequence
{
unsigned short startTimeBin ; // the time of the sequence start
unsigned short Length ; // in units of time bins
unsigned short Offset ; // offset from the first hit of the pad
}i

struct Sequences

{

unsigned char* FirstAdc ; // pointer to the first hit
sequence* Seq ; // pointer to the sequence array

b

// The following struct is internal to the TpcDagSector object
// (unpacker). It is described here to provide an idea of the storage
// required by the TpcDagSector object.

struct PadRow
{
unsigned char* nSeq ;
Sequences** Seq ;
PadRow (int Pads) ;//argument:# pads this pad row
//allocates space needed for pad row
~PadRow () ;
clear () ; //cleans up storage used for Sequences, zeroes nSeql[];
int nPads ; // variable pad size

Interface

//base class for both TpcDagSector and TpcSimSector classes:

class TpcSector
{
public:
// makes the data for sector accessible:
virtual int getSector (int which, Event* event) = 0 ;
// 0 == O0.K.
// -1 wrong sector number,
// -2 wrong event
// method to get access to the data:
virtual int getSequences (int padRow,
int pad, int *nSeq, Sequences** Seq) = 0 ;
// 0 == O0.K. -1 wrong Row, -2 wrong pad,
// -3, -4 wrong third and fourth arg,
//-1000 no call to getSector

virtual int getPadlist(int PadRow, unsigned char **PadList) = 0;
// returns number of pads in array PadList/[]
// >0 return value: no sequences on this pad row
// -1000: getSector call failed
// PadList[] is an array of pad numbers which
// contain one or more valid sequences

// removes or resets internal aux sStructs:
virtual void clear() = 0 ;

i

class TpcDaqSector: public TpcSector
{
public:
int getSector (int which, DagEvent* event)
int getSequences (int padRow, int pad, int* nSeq, Sequences** Seq)
int getPadList(int PadRow, unsigned char **PadList)
Sector () ;
~Sector () ;
clear() ;
private:
PadRow* Row[45] ;
int status ;
// 0 not filled,
// 1 filled O.K
// >0 filled, with problems
i

class TpcSimSector: public TpcSector

{

// This will be defined by Brian L for the Simulation derived class.
}

class TpcFeeSector ;
{
public:
int getFeeSector (int which, DagEvent* event) ;
int getFeeSequences (int Fee, int Pin, int* nSeq, Sequences** Seq)

int getFeelist (unsigned char **Feelist) ;

FeeSector() ;

~FeeSector () ;

clear ()
private:

int status ;

// 0 not filled,

// 1 filled O.K

// >0 filled,

’

}i

Header file: TpcDatalnterface.hh

#ifndef TPCDATAINTERFACE HH
#define TPCDATAINTERFACE HH

with problems

// Event belongs one level higher. It is included here only for

// completeness

struct Sequence
{
unsigned short
unsigned short
unsigned short
i
struct Sequences

{

union

{

startTimeBin ;
Length ;
Offset

’

unsigned short* FirstLinAdc
unsigned char* FirstAdc
}i
Sequence* Seq ;
}i
class TpcSector

{
public:

virtual int getSector (int which,

// 0 O.K.,-1 wrong sector number,
virtual int getSequences (int padRow,
Sequences** Seq)
-1 wrong Row,
-4 wrong third and fourth arg,

int *nSeq,
// 0 O.K.
/=3,

// the time of the sequence start
// in units of time bins
// offset from the first hit of the pad

’

; // polnter to the first hit

Event* event) 0 ;

-2 wrong event
int pad,

0 7

-2 wrong pad,

//-1000 no call or failed call to getSector

virtual int getPadList (int padrow,

// return value >= 0
// -1
// -1000
virtual void clear() = 0 ;
// removes or resets

}i
unsigned

class TpcFeeSector

{

unsigned char** Padlist) = 0 ;
number 1f pads in array PadList
= wrong padrow

no successful call to getSector

internal aux structs:

public:
virtual int getFeeSector (int which, Event* event) = 0 ;
// 0 O.K.,-1 wrong sector number, -2 wrong event
virtual int getFeeSequences (int Fee, int Pin,
int *nSeq, Sequences** Seq) = 0 ;
// 0 O.K. -1 wrong Row, -2 wrong pad,
// -3, -4 wrong third and fourth arg,
//-1000 no call or failed call to getFeeSector

virtual int getFeelist (unsigned char** Padlist) = 0 ;

// return value >= 0 := number if pads in array FeelList

// -1000 := no successful call to getFeeSector
virtual void clear() = 0 ;

// removes or resets internal aux structs:

}i

unsigned
#endif // TPCDATAINTERFACE HH

Example application - access by padrow, pad

This first example is correct, but suffers from being written explicitly
for the TpcDagSector derived class, thus not reusable in the simulation
environment.

The loop would look like:

while (dagReader.readEvent (&event) > 0)
// this 1s outside the interface defined here
{
if (!dagReader.Tpc) continue ; // No TPC
for(sector = 1 ; sector <= 24 ; sector++) // sector loop
{
int retval=TpcDagSector.getSector (sector, event);
if ((retval)
{
printf (“this sector has a problem: %$d\n”,retval);
exit (-1);
}
for (padrow = 1 ; padrow <= 45 ; padrow+t+)
{
npads = TpcDagSector.getPadList (padrow,padlist);
for (ipad=0, pad=padlist[0] ; ipad<npads ; pad=padlist[ipad++])
{
Sequences* TpcSequence ;
iret =
TpcDagSector.getSequences (padrow, pad, &nSeq, &TpcSequence) ;
if(iret < 0)
{
printf ("error message.. :—("y
return(iret) ;
}
if (!nSeq) continue ; // no longer required!
for(iseq = 0 ; iseqg < nSeq ; iseqg++)
{
// LinArray 1is a 256 element array of unsigned shorts
// for linearizing the 8 bit adc values

unsigned char *adc = TpcSequence->FirstAdc +
TpcSequence->Seqliseq] .Offset;

for(int t = 0; t < TpcSequence->Seq[iseq].Length ; t++)
{
printf ("Time %d Adc %d \n",
TpcSequence->Seq[iseq] .startTimeBin + t,
LinArrayladc[t]]);

} // end of loop over adc values
} // end of loop over sequences
} // end of loop over pads
} // end of loop over pad rows
TpcDagSector.clear () ;
} // end of loop over sectors
} //end of loop over events

//

Better example - access by padrow, pad

The following application is an illustration of user code which would be usable in both the simulation and
reconstruction environments, since in the demo loop it refers only to the base class TpcSector. In the
outermost part of the code [see main(), below], there must of course be a reference to the derived class that
will be used.

// This code provides an example that passes a compile step and

// illustrates the interface as proposed. The higher level of the

// interface, the Event and Reader level are here because there

// has to be an upper level to make it "look" complete. These levels
// are presently completely undefined and have not even started to be
// discussed. The code included in this example declaring part of

// these upper levels is not a starting point for a discussion.

#include "TpcDatalInterface.hh"
#include "TpcDagDatalInterface.hh"
#include "DummyClassesForDemo.hh"
#include <stdio.h>

#include <string.h>

// demo loop using the interface only

int demoLoop (Reader& reader, Eventé& event, TpcSectoré& tpcSector)
{

int sector, padrow, npads, pad, iret ;

unsigned char* padlist ;

unsigned short* LinArray = TpclinArray ;

if(!reader.testDetector ("TPC")) continue ; // No TPC
for (int sector = 1 ; sector <= 24 ; sector++) // sector loop
{

int retval = tpcSector.getSector (sector, &event);

if (retval) {
printf ("this sector has a problem: %d\n",retval);
exit (-1);

}

for (padrow = 1 ; padrow <= 45 ; padrow++) {
npads = tpcSector.getPadList (padrow, &padlist) ;
for (int ipad=0, pad=padlist[0] ; ipad<npads ;

pad=padlist[ipad++]) {

Sequences* TpcSequence ;

int nSeq ;

iret =

tpcSector.getSequences (padrow, pad, &nSeq, &§TpcSequence) ;

if(iret < 0) {
printf ("error message.. :—("); return(iret) ;

}

if (!nSeq) continue ; // no longer required!

for(int iseq = 0 ; iseqg < nSeq ; iseqg++) {
// LinArray 1is a 256 element array of unsigned shorts
// for linearizing the 8 bit adc values
unsigned char *adc =
TpcSequence->FirstAdc + TpcSequence->Seqg[iseq].Offset;
for (int t=0; t < TpcSequence->Seq[iseq].Length ; t++)
printf ("Time %d Adc %d \n",

TpcSequence->Seq[iseq] .startTimeBin + t,
LinArrayladc[t]]);
} // end of loop over sequences
} // end of loop over pads
} // end of loop over pad rows
tpcSector.clear () ;
} // end of loop over sectors
} //end of loop over events
return(0) ;

}s;

main(), illustrating sim and daq data reading

main(int argc , char** argv)
{
// setup the linarray (simplest case)
for(int 1 = 0 ; 1 < 256 ; i++) { TpcLinArrayl[i] =1 ; } ;

// are we simulating or analyzing DAQ data?

if(!strncmp(argv[1l],"SIM", strlen("SIM"))) //SIM case
{
SimEvent sEvent ;
SimReader sReader;
TpcSimSector sSector ;
int iret = demoLoop (sReader,sEvent,sSector) ;
return (iret) ;
}
else // DAQ
{
DagEvent dEvent ;
DagReader dReader;
TpcDagSector dSector ;
int iret = demoLoop (dReader,dEvent,dSector) ;
return (iret);
}
}; // end of main

Better example - access by Fee, pin

// This code provides an example that passes a compile step and

// illustrates the interface as proposed. The higher level of the

// interface, the Event and Reader level are here because there

// has to be an upper level to make it "look" complete. These levels
// are presently completely undefined and have not even started to be
// discussed. The code included in this example declaring part of

// these upper levels is not a starting point for a discussion.

#include "TpcDatalInterface.hh"
#include "TpcDagDatalInterface.hh"
#include "DummyClassesForDemo.hh"
#include <stdio.h>

#include <string.h>

// demo loop using the interface only

int demoLoop (Reader& reader, Eventé& event, TpcFeeSector& tpcFeeSector)
{

int sector, fee, pin, iret H

unsigned char* feelist ;

unsigned short* LinArray = TpcLinArray ;

if (!reader.testDetector ("TPC")) continue ; // No TPC
for (int sector = 1; sector <= 24; sector++) // sector loop
{

int retval = tpcFeeSector.getFeeSector (sector, &event);

if (retval) {
printf ("this sector has a problem: %$d\n",retval);
exit (-1);

}

nfee = tpcSector.getFeelist (&feelist);

for(int ifee = 0, fee=feelist[0]; ifee <= nfee; fee=feelist[ifee++])

for (pin=0; pin<1l6; pin++) {
Sequences* TpcSequence ;
int nSeq ;

iret = tpcFeeSector.getFeeSequences (fee,pin, &nSeq, &TpcSequence) ;

if(iret < 0) {
printf ("error message.. :=("); return(iret) ;
}
if(!'nSeq) continue ; // some pins not connected!!
for(int iseq = 0 ; iseqg < nSeq ; iseg++) {
// LinArray 1is a 256 element array of unsigned shorts
// for linearizing the 8 bit adc values
unsigned char *adc =
TpcSequence->FirstAdc + TpcSequence->Seqg[iseq] .Offset;
for (int t=0; t < TpcSequence->Seq[iseq].Length ; t++)
printf ("Time %d Adc %d \n",
TpcSequence->Seq[iseq] .startTimeBin + t,
LinArrayladc[t]]);
} // end of loop over sequences
} // end of loop over pins
} // end of loop over FEEs
tpcFeeSector.clear () ;
} // end of loop over sectors
} //end of loop over events

{

return(0) ;

i
main(), illustrating daq FEE data reading

main (int argc , char** argv)
{
// setup the linarray (simplest case)
for(int 1 = 0 ; 1 < 256 ; i++) { TpcLinArrayl[i]

DagEvent dEvent ;
DagReader dReader;
TpcFeeSector dSector ;
int iret = demoLoop (dReader,dEvent,dSector) ;
return (iret);
}; // end of main

